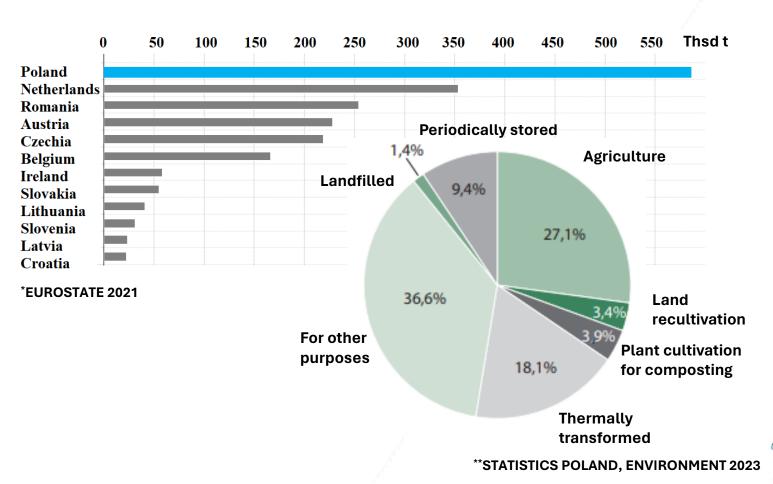


Biomethane potential of post-processing liquid from the hydrothermal carbonization of sewage sludge

Małgorzata Wilk, Klaudia Czerwińska, Maciej Śliz, Joanna Mikusińska

AGH University of Krakow


Grzegorz Cema

Silesian University of Technology

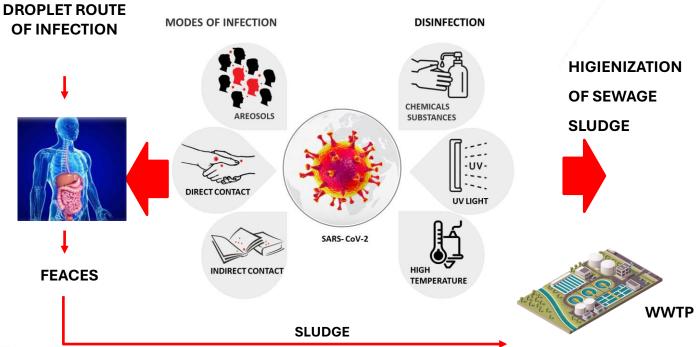
MOTIVATION

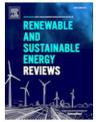
Sewage sludge production and disposal from urban wastewater (db)***

International Conference Water and Sewage in the Circular Economy Model - CEwater | April 22-24, 2024

UNFAVOURABLE PROPERTIES SEWAGE SLUDGE

- High content of moisture
- Insufficient dewaterability
- Organic content biodegradable elements
- Bacteria, viruses, pathogens
- Pharmaceuticals
- Microplastics
- Odorous
- High volume of waste
- Frequently disposed in landfill


PRETREATMENT CONDITIONING TREATMENT



Wilk M., Czerwińska K., Śliz M., Imbierowicz M. Hydrothermal carbonization of sewage sludge: Hydrochar properties and processing water treatment by distillation and wet oxidation. Energy Reports 9 (2023) 39–58

SEWAGE SLUGE as POTENTIAL RISK of SARS-COV-2

Czerwińska K., Śliz M., Wilk M. Hydrothermal carbonization process: Fundamentals. main parameter characteristics and possible applications including an effective method of SARS-CoV-2 mitigation in sewage sludge. A review. Renewable and Sustainable Energy Reviews 154 (2022) 111873

SEWAGE SLUDGE TREATMENTS

IMPROVED PROPERTIES:

- Dewaterability !!!
- Disinfection
- Reduction of waste volume
- Biodegradability
- Microplastic removal
- Pharmaceutical removal

Wilk M., Śliz M., Czerwińska K., Śledź M. The effect of an acid catalyst on the hydrothermal carbonization of sewage sludge. Journal of Environmental Management 345 (2023) 118820

HYDROTHERMAL CARBONIZATION PROCESS

SEWAGE SLUDGE

~80% moisture

210 °C, 2 h

Water vapour pressure

Aqueous environment

suspended

solid HYDROCHAR (3.3 %)

in

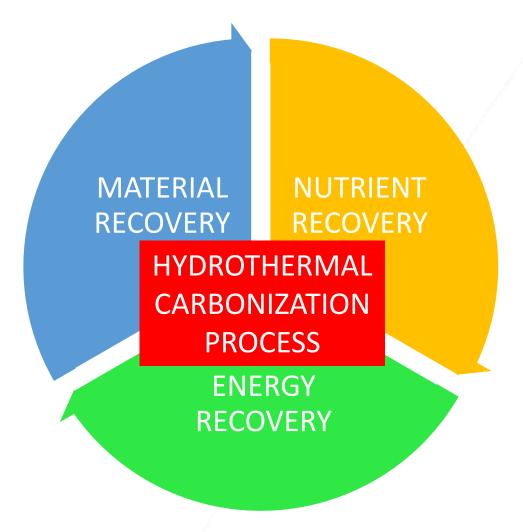
POST-PROCESSING LIQUID

(92.5%)

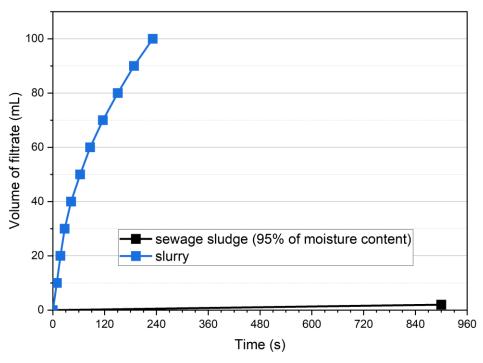
+

GAS AND LOSSES (4.2%)

in open digestion chamber from Wastewater Treatment Plant in Lubin, Poland


1 L of volume, Zipperclave Stirred Reactor equiped with MagneDrive, Parker Autoclave Engineers, USA

hydrothermal slurry



Liechtenstein CIRCULAR ECONOMY CONCEPT

DEWATERING

Vaccum filtration process:

Volume of slurry: 150 mL

I step:

- Fitration under pressure: 4 bar
- Registered time of collected filtrate: every 10 mL

II step:

FILTRATION

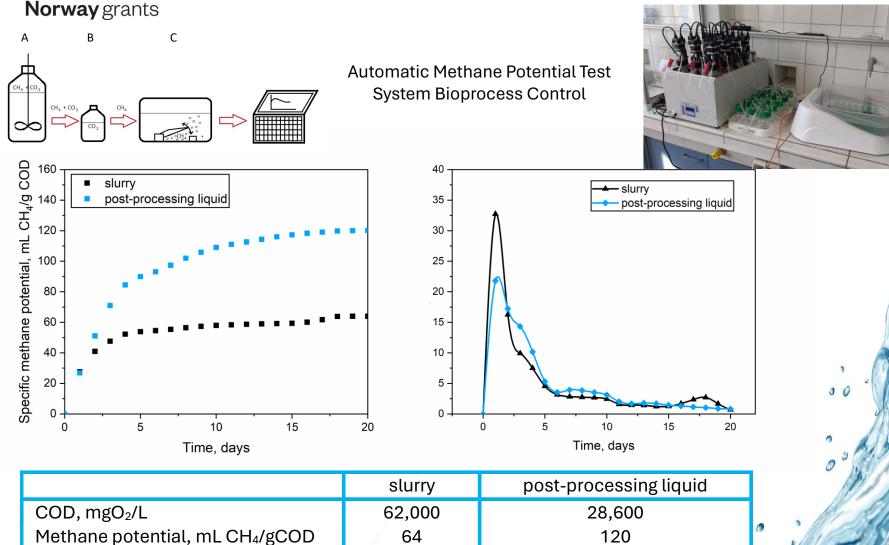
 Filtration under pressure: 16 bar at 100 mL of collected filtrate

Total volume of filtrate: 130 mL

Total time: 6 min 25 s

Filtration cake: 35.4% d.m.

Post-processing liquid


Liechtenstein POST-PROCESSING LIQUID CHARACTERISTICS

Norway grants

Parameters	Post-processing liquid	Aparatus
COD, mg/L	28,600	f.
TOC, mg/L	12,800	<u>/</u>
Phenol	101.00	Ţ.
PO ₄ -P, mg/L	480	/ Prove 100
PO₄³-, mg/L	1,460	Spectrophotometer VI 1
P_2O_5 , mg/L	1,090	UNIT VIS.BR wavelength
NH₄⁺, mg/L	1150	/ range 320-1100 nm,
Mg, mg/L	315	Spectral bandwidth 4nm
Ca [mg/l]	47.5	Spectroquant
Cl free, mg/L	31.5	
Cl total, mg/L	36.5	
N total, mg/L	2,125	4
рН	7.01	Multifunction Laboratory "
Conductivity, mS/cm	7.47	Meter CX-505 ELMETRON

BIOMETHANE POTENTIAL TEST

International Conference Water and Sewage in the Circular Economy Model - CEwater | April 22-24, 2024

CONCLUSIONS

HYDROTHERMAL CARBONIZATION PROCESS:

- Improves dewaterability of sewage sludge
- Decreases its volume
- Generates slurry of suspended hydrochar in post-processing liquid
- COD level of filtrated post-processing liquid indicates high toxicity
- BMPs of post-processing liquid exhibited higher methane potential
- 80% of methane was produced in first 10 days of BMP test for all samples
- MEETS A CRITERIA OF CIRCULAR ECONOMY CONCEPT

THANK YOU FOR YOUR ATTENTION

Acknowledgements

This research was supported by the National Science Centre, Poland OPUS 21 [grant no. 2021/41/B/ST8/01815].

The authors would like to express thanks to the proprietor of the experimental apparatus EKOPROD Ltd. in Bytom.

Contact:

Małgorzata Wilk Associate profesor

e-mail: mwilk@agh.edu.pl

